Synergistic Effect of Dual Electron-Cocatalysts for Enhanced Photocatalytic Activity: rGO as Electron-Transfer Mediator and Fe(III) as Oxygen-Reduction Active Site
نویسندگان
چکیده
For a high-performance cocatalyst-modified photocatalyst, an effective interfacial separation of photogenerated electron from its corresponding holes and its following reduction reaction at the active sites are highly required. However, it is difficult for a single-component cocatalyst to simultaneously realize the crucial functions. In this study, an effective interfacial transfer of photogenerated electrons and its following rapid oxygen-reduction can be easily realized in a dual electron-cocatalyst modified Fe(III)/rGO-TiO2 photocatalyst, where the rGO nanosheets function as an electron-transfer mediator for the effective transfer of photogenerated electrons from the TiO2 surface while the Fe(III) cocatalyst serves as an electron-reduction active site to promote the following interfacial oxygen reduction. In this case, the rGO nanosheets were firstly loaded on the TiO2 nanoparticle surface by a hydrothermal method and then the Fe(III) cocatalyst was further modified on the rGO nanosheets by an impregnation method to prepare the Fe(III)/rGO-TiO2 photocatalyst. It was found that the dual electron-cocatalyst modified Fe(III)/rGO-TiO2 photocatalyst showed an obviously higher photocatalytic performance than the naked TiO2 and single-cocatalyst modified photocatalysts (such as Fe(III)/TiO2 and rGO-TiO2) owing to the synergistic effect of rGO and Fe(III) bi-cocatalysts. The present work can provide some new insights for the smart design of high-efficiency photocatalytic materials.
منابع مشابه
Unveiling the mechanism of electron transfer facilitated regeneration of active Fe2+ by nano-dispersed iron/graphene catalyst for phenol removal
Nano-dispersed Fe and Fe3O4 on reduced graphene oxide (Fe /Fe3O4-RGO) was prepared and characterized. The prepared Fe/Fe3O4-RGO was used as a magnetically separable Fenton-like catalyst and showed superior catalytic activity compared to Fe3O4-RGO and Fe3O4 as well as other Fenton-like catalysts for the removal of phenol. The Fe/Fe3O4-RGO achieved 100% removal efficiency for phenol within 30 min...
متن کاملCeO2 nanorod/g-C3N4/N-rGO composite: enhanced visible-light-driven photocatalytic performance and the role of N-rGO as electronic transfer media.
A novel CeO2 nanorod/g-C3N4/N-rGO ternary composite was synthesized using a simple ultrasonic-heat treatment method for application in the photocatalytic degradation of organic pollutants under the irradiation of visible light. This material shows superior photocatalytic activity compared with pure g-C3N4 and CeO2 nanorods, and the photodegradation rate of RhB is up to 2.1-fold higher than that...
متن کاملRoles of cocatalysts in photocatalysis and photoelectrocatalysis.
Since the 1970s, splitting water using solar energy has been a focus of great attention as a possible means for converting solar energy to chemical energy in the form of clean and renewable hydrogen fuel. Approaches to solar water splitting include photocatalytic water splitting with homogeneous or heterogeneous photocatalysts, photoelectrochemical or photoelectrocatalytic (PEC) water splitting...
متن کاملNew copper/GO based material as an efficient oxygen reduction catalyst in an alkaline medium: The role of unique Cu/rGO architecture
A new hybrid Cu/rGO catalyst obtained by a thermal treatment of the composite of a copperbased MOF with graphite oxide exhibited a marked catalytic activity for oxygen reduction reaction (ORR) in an alkaline medium, high tolerance to methanol oxidation and superior long-term stability over 20 hours. The unique architecture of the copper atoms in the 3D framework of the pristine MOF coupled with...
متن کاملEnhanced removal of methylene blue dye by bimetallic nano-sized MOF-5s
Metal-organic framework 5 (MOF-5) and bimetallic MOF-5s (Co/Zn and Ni/Zn) were prepared via a simple solvothermal method. Samples were characterized by various techniques such as powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), UV-Vis diffuse reflectance spectroscopy (DRS), inductively coupled plasma (ICP) and elemental analysis (EA). Photo...
متن کامل